Na+/Pi co-transport alters rapidly cytoskeletal protein polymerization dynamics in opossum kidney cells.

نویسندگان

  • E A Papakonstanti
  • D S Emmanouel
  • A Gravanis
  • C Stournaras
چکیده

We studied with biochemical and immunofluorescent techniques the interactions between the actin microfilament and tubulin microtubule cytoskeleton and Na+/P1 co-transport in opossum kidney cells, a line with proximal tubular characteristics. On brief (5 min) incubation of the cells with a low (0.1 mM) concentration of Pi, a rapid F-actin depolymerization takes place, which fails to occur in cells incubated under similar conditions with 1 mM Pi. The disassembly of actin microfilaments could be quantitatively expressed as a 33% increase in the ration of monomeric G-actin to polymerized F-actin (G/F-actin ration from 0.80 +/- 0.03 to 1.06 +/- 0.06, n = 28, P<0.01), owing to a significant decrease in the latter. Under these conditions microfilaments were also markedly destabilized, as shown by their diminished resistance to graded cytochalasin B concentrations. In addition, incubation of opossum kidney cells with low Pi concentrations (0.1 mM) resulted within 5 min in a substantial depolymerization of microtubules, shown by immunofluorescence microscopy and measured as a 70.9 +/- 6.9% (n = 11, P<0.01) decrement by immunoblot analysis. These changes, which occur only when extracellular Pi concentrations are kept low, seem to be related to a significant increase within 5 min in the rate of cellular Pi uptake by 25.5% under these conditions. The shifts in the dynamic equilibria between monomeric and polymerized actin and tubulin in response to cellular Pi uptake were transient, being fully reversible within 30 min. Moreover, the effect of Pi seemed to be specific because inhibition of its uptake by phosphonoformic acid blunted microtubular disassembly markedly. In contrast, measurement of Pi uptake in the presence of agents known to stabilize cytoskeletal structures showed a substantial decrease with phallacidin, which stabilized microfilaments, whereas the microtubule stabilizer taxol had no apparent effect. These results indicate that acute alterations in the polymerization dynamics and stability of both microfilaments and microtubules are involved in the modulation of Na+/Pi co-transport and suggest important cytoskeletal participation in proximal tubular transport functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parathyroid hormone-dependent degradation of type II Na+/Pi cotransporters.

Parathyroid hormone (PTH) inhibits proximal tubular brush border membrane Na+/Pi cotransport activity; this decrease in the transport activity was found to be associated with a decrease in type II Na+/Pi cotransporter protein content in rat brush border membranes. In the present study we investigated the PTH-dependent regulation of the type II Na+/Pi cotransporter in opossum kidney cells, a pre...

متن کامل

PLC-gamma1 signaling pathway and villin activation are involved in actin cytoskeleton reorganization induced by Na+/Pi cotransport up-regulation.

BACKGROUND The brief incubation of opossum kidney (OK) cells with low P(i) results in Na+/P(i) cotransport up-regulation and in substantial, but transient, cytoskeletal reorganization. In this study, we examined signaling events involved in the depolymerization of microfilaments. RESULTS Confocal laser scanning microscopy, immunoblot and immunoprecipitation experiments revealed villin co-loca...

متن کامل

Adaptation of Opossum Kidney Cells to Luminal Phosphate: Effects of Phosphonoformic Acid and Kinase Inhibitors.

BACKGROUND/AIMS Renal reabsorption of inorganic phosphate (Pi) is mediated by SLC34 and SLC20 Na+/Pi-cotransporters the abundance of which is under hormonal control. Extracellular Pi itself also regulates the expression of cotransporters and the concentration of Pi-regulating hormones, though the signaling pathways are largely unknown. Here, we explored the mechanisms that allow renal proximal ...

متن کامل

Sodium-dependent phosphate transport inhibited by parathyroid hormone and cyclic AMP stimulation in an opossum kidney cell line.

In the present study we investigated the characteristics of the transport of inorganic phosphate (Pi) in an opossum kidney cell line endowed with parathyroid hormone (PTH) receptors. In confluent epithelial cell culture, a Na-dependent Pi transport (NaPiT) was identified. Preincubation for 1 h with bovine (b)PTH(1-34) at 10(-7) M inhibited the NaPiT from 2.76 +/- 0.11 to 1.08 +/- 0.10 nmol/mg p...

متن کامل

Cloning of a Na/Pi cotransporter from opossum kidney cells.

Opossum kidney (OK) cells have been extensively used to study cellular mechanisms of renal proximal tubular Na/P(i) cotransport. We have cloned a cDNA (NaPi-4) most likely encoding an apical Na/P(i) cotransporter from OK cells. The cloning strategy was based on homology to the recently cloned human renal (NaPi-3) Na/P(i) cotransporter (Magagnin, S., Werner, A., Markovich, D., Sorribas, V., Stan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 315 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1996